Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Jun Shi $\ddagger$

Department of Basic Course, Tianjin Agricultural College, Tianjin 300384, People's Republic of China
\# Current address: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: shi_jun99@163.com

## Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.040$
$w R$ factor $=0.107$
Data-to-parameter ratio $=12.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## (E)-1-[4-(4-Chlorobenzyloxy)benzylidene]-2-(2,4-dinitrophenyl)hydrazine

The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5}$, is not planar; the dinitrophenylhydrazine system makes dihedral angles of 57.46 (5) and 5.77 (12) ${ }^{\circ}$ with the terminal benzene ring and the central benzene ring, respectively. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond helps to establish the molecular conformation.

## Comment

Metal complexes involving Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). Research in this area has been stimulated by biological modelling applications, catalysis, design of molecular magnets and materials chemistry (Larson \& Pecoraro, 1991). Consequently, a large number of Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics, such as models to mimic hydrolase in the hydrolysis of p-nitrophenyl picolinate (Li et al., 2005).


In the present study, we report the synthesis and molecular structure of the dinitrophenylhydrazine Schiff base derivative, (I) (Fig. 1). The dinitrophenylhydrazine system (atoms C15-C20/O2-O5/N1-N4) is essentially planar, with an r.m.s deviation for fitted atoms of $0.034 \AA$. This plane makes dihedral angles of $57.46(5)$ and $5.77(12)^{\circ}$ with the terminal benzene ring ( $\mathrm{C} 1-\mathrm{C} 6$ ) and the central benzene ring ( $\mathrm{C} 8-\mathrm{C} 13$ ), respectively. The dihedral angle between the terminal benzene and the central benzene rings is $56.10(8)^{\circ}$. All bond lengths and angles are within normal ranges (Allen et al., 1987). The O2-N3-C20-C19, O3-N3-C20-C15, O5-N4-C18C 19 and $\mathrm{O} 4-\mathrm{N} 3-\mathrm{C} 18-\mathrm{C} 17$ torsion angles are -179.7 (2), -178.1 (2), 175.8 (2) and $175.6(2)^{\circ}$, respectively, confirming the coplanarity of the two nitro groups $(\mathrm{O} 2 / \mathrm{N} 3 / \mathrm{O} 3$ and $\mathrm{O} 4 / \mathrm{N} 4 /$ O 5 ) and their attached aromatic ring ( $\mathrm{C} 15-\mathrm{C} 20$ ).

An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1) helps to stabilize the conformation of the molecule (Fig. 2).

## Experimental

An anhydrous ethanol solution ( 50 ml ) of 4-(4-chlorobenzyloxy)benzaldehyde ( $2.47 \mathrm{~g}, 10 \mathrm{mmol}$ ) was added to an anhydrous ethanol solution ( 50 ml ) of 1-(2,4-dinitrophenyl)hydrazine ( 1.98 g ,

Received 11 September 2006 Accepted 13 September 2006

## organic papers

10 mmol ) and the mixture stirred at 350 K for 5 h under nitrogen, giving a red precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give the pure compound in $88 \%$ yield. Red single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a dimethylformamide solution.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5} \\
& M_{r}=426.81 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.0914(16) \AA \\
& b=11.975(3) \AA \\
& c=12.121(3) \AA \\
& \alpha=69.858(4)^{\circ} \\
& \beta=78.456(4)^{\circ} \\
& \gamma=85.193(4)^{\circ}
\end{aligned}
$$

## Data collection

Bruker SMART APEX CCD areadetector diffractometer $\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.921, T_{\text {max }}=0.976$

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& V=946.7(4) \AA^{3} \\
& Z=2 \\
& D_{x}=1.497 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.25 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.26 \times 0.20 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.107$
$S=1.03$
3332 reflections
271 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ( $\left(\AA{ }^{\circ}\right.$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$ | 0.86 | 2.01 | $2.621(2)$ | 128 |

The H atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{Csp}{ }^{2}-\mathrm{H}=0.93 \AA$, methylene $\mathrm{C}-\mathrm{H}$ $=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.


Figure 1
The molecular structure of (I), with displacement ellipsoids for non-H atoms drawn at the $30 \%$ probability level.


Figure 2
Packing diagram for (I), with hydrogen bonds shown as dashed lines.

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
Larson, E. J. \& Pecoraro, V. L. (1991). J. Am. Chem. Soc. 113, 3810-3818.
Li, J.-Z., Xu, B., Li, S.-X., Zeng, W. \& Qin, S.-Y. (2005). Transition Met. Chem. 30, 669-676.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL97. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

